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into the expressions for A,',% and h=.x from (1.19) and (1.21). 
We note that the results obtained here can be applied to a fairly large number of contact 

and mixed problems of elasticity theory as well as to modified mixed problems of mathematical 
physics. The need to tabulate the functions S;(~(I,B)(O~Z<CO) and G&(arccolz)((r(<l) arises 
here; this can be achieved by using continued fractions /lo-12/. 
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ASYMPTOTIC SOLUTION OF THREE-DIMENSIONAL PROBLEB OF THE 
THEORY OF ELASTICITY OF EXTENDED PIANE SEPARATION CBA&KS* 

R.V. GOL'DSHTEIN, A.V. KAPTSOV, and L.B. KOREL'SHTEIN 

A solution of three-dimensional elasticity theory problems for separation 
cracks occupying a plane domain with one characteristic dimension much 
smaller than the other is constructed by the method of matched asymptotic 
expansions (cracks that are extended along a certain plane curve). The 

appropriate terms of the expansion of the solution in a small parameter 
characterizing the extent of the crack are constructed using an integro- 
differential equation in the displacement of points of the crack surface. 
For cracks that are extended along a line, the representation of the integro- 
differential equation in terms of a two-dimensional Fourier transform iS 

used, which substantially simplifies the calculation. In the general case, 

the expansion is executed directly in the equation written in s-space. 

The asymptotic expansion constructed is valid in the middle part of the 
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crack, outside of certain small neighbourhoods of the ends of the curve 
along which the crack is drawn. The accuracy of the solution obtained is 
analysed, and formulas are presented for the crack aperture and the 
distribution of the stress intensity factors for specific kinds of cracks: 
cracks of elliptical planform, a ring and ring sector, crescents, bounded 
by parabolic arcs, narrow crescent domains, extended along a parabolic 
arc, etc. A comparison of the results with existing solutions of elliptical 
and annular cracks, as well as with numerical solutions constructed 
specially by a variational-difference method for cracks of different 
shape demonstrates the high efficiency of the asymptotic formulas obtained. 

1. Rectilinear extended crack. We consider a homogeneous isotropic medium with 
a crack occupying the domain G in the z = 0 plane. Oppositely directed normal forces 

o,,+ (2, Y, 0) = %z- (.z, Y, 0) = -P (? y) Q 0 

oxz (2, y. 0) = u,,r (G y, 0) = 0, (T Y) E G 

are applied to the crack surfaces (the superscripts plus and minus correspond to the upper 
and lower crack edges). There is no load at infinity. Then /l-3/, the tangential ccmponents 
of the displacement of the crack surfaces are continuous 

4+ (s, Y, 0) = a; (z, Y, O), uy' (.2, Y., 0) = U; (s, Y, O), (2, Y) EG 

and we have for the normal components of the displacement 

y+ (z, Y, 0) = -_y- (2, Y, 0) = u (r, Y) > 0, (2, Y) E G 

Determination of the displacement of separation crack surfaces reduces to seeking a 
bounded function u(z, Y) that equals zero outside the domain G and satisfies the following 
integro-differential equation for (r,y)~ G 

and 

u w* ar’) 
*aI s,s - dx’ dy’ = 

- ~J@P (2, Y), (2, Y) E G 

yz = (z - s’)P + (y - y’)%, p = p (1 - Y)-1 

Here p and v are, respectively, the shear modulus and Poisson's ratio of the medium, 

4v is the two-dimensional Laplace operator. 
Equation (1.1) can be written in the form 

PC Ki [I/La + &,,*I * u (2, Y)} = BP (a Y)* (21 y) EG 

(i.1) 

w 
where F,, is the Fourier transform 

F,tcp(x,y)l= 8 exp[i(E,r i- &,~)lc~(r, Y)dsdY 
-0D 

PO is the operator of the constraint on the domain G and the functions in (1.2) are 
understood in the generalized sense 
s’ (R’), PO : s’ (Ra) + s’ (G), 141). 

(U ES' (R'), vw E s’ (R’), p E S' (G), Fz,, : S’ (I?*)-+ 

Let the crack occupy a domain 
where L>O, 

G(e) of the following form (Fig. 1): Iz] <L, 1 y (Q &p(z), 
the function p(x) is bounded and p (x))E cZ(-~5, L), p >O and the dimen- 

sionlessparameter a> 0. For small E we obtain a narrow crack stretched along the Ox 
axis. The problem is to determine the asymptotic of the edge displacements 11 (x, Y, E) (cor- 
responding to the crack G(E)) as e + 0. 

We introduce the internal coordinate Y = e-'y: Then the crack will occupy a constant 
domain G: 1x1 <L, jYl<.p(z) in the x, Y coordinates. In the Fourier transforms 6~ = eS 
corresponds to the coordinate Y; hence 

F-~[~~]=E-'P'[~~'+EJE-~], F=F,y (1.3) 

Substituting (1.3) into (1.2) and taking into account that the convolution is reduced 
e times in the new (x, Y) coordinates, we obtain, 

PC {PI [vm] * u (2, yv E,> = E& (Z, y, E), (t, Y) E G (1.4) 

We find the asymptotic ~'[~/ea~ + EraI as a generalized functions as e-0. The 
following asymptotic forms are derived directly from the definition of the generalized 
functions by standard methods of regularizing integrals: 
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We hence have 

Since ,4, VXZV=(s%* + b3(eba + E$)-"~== I&l + %eaL1[8 &) -i-q] + o(e*) (4.5) 

Fig. 1 

where 7 is Euler's constant, then because of the continuity of the operator 

(R"), formula (1.4) can be written in the form 

PO@& -k eah(2/e)6”(z)+ I+@¶+ O(E~]+U(z? Y,e)== -k#kp(Z, Y, e) 

@ .=--2s(t)&-P+ 

~*-~-_6”(z)1111YI+Y,~P~ 

Let p(x, Y, e) have the following asymptotic 

p (2, Y, e) = ia eh (2. Y) + 0 (8% Pot Ptt IhE C (0 

F-1 : S’ (P) - S’ 

V-6) 

Then it is natural to seek the asymptotic form u(z, Y, e) in the following form that 
results from comparing the asymptotic expansions of the right and left sides in (1.6): 

u(z,Y,e)=e{u,(z,Y)+euI(z,Y)+e21n(2/e)v(z,Y)+ 
e*u, 66 Y) + w (z, Y, e)) 

The third component in the braces is necessary to cancel the term of order alne gen- 
erated by the corresponding logarithmic term in the asymptotic expansion of the kernel in 
(1.6). 

The supports of .a11 the functions here lie in G,u~(z, Y) is a reguLar boundedcontinuous 
function, the functions uI y, v are regular and continuous in any closed drain not containing 
the ends G (t -:&L); w (z, Y, e) = o (1) (not o(e') because of the possible boundary layers 
at the ends of G whose area tends to zero, fin which the quantity 4% (2, Y, a) - u,(z, Y) is 
bounded) and w(t, Y, e) = o(ez) in any closed domain not containing the ends G. 

We will find uO, aI, h, v in the middle part of G (in any of its closed,subdomains not 

containing the ends). We note that because of the continuity of the convolution operation in 
S’ (R*) as well as because the support of the function a0 and 6” (z)is the line x = Oin the 
middle part of the crack, we have 

(Do s w (z, Y, e) = 0 (e2), e2cpl * w (2, Y, 8) = 0 (a') 
ealn (2 / e) 6” (5) * w (3, Y, e) = 0 (8’) 

Consequently, equating terms of identical order in (1.6), we obtain in the middle part 
of the crack 

(l.7) 
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Equations (1.7) can be considered as equalities of continuous functions. For any fixed 

ZE (-L,, L) each is (as should be expected) an equation of the plane problem of a rectilinear 
crack of normal separation (with a certain force distribution along the edges) and all the 
equations can be solved successively in guadratures /1,5/, 

We present the explicit version of the asymptotic form for p(x, Y, E) = p=const. In 

this case we obtain from (1.7) 

Pl = Prr = 0, IL1 = 0, ug = q, v = qf”i4 

aa=% 2~+(2In2)p-(flnf)"+ I -&w)= 

VE!? 2(~~ln2)~~(~~~+~~~] { 
f=f(2)=p2(+)e(1--Ir/tl) 

4’5q(s,Y)=BpT/pe(z)-Y”, Q=S2(z)=&$+ 

and finally 

u (z, Y, e) =-eqQ + 0 (ES) V-2) 

Q = Q k, Y, e) fli 1 + (‘Idea 121n (4 / 8) f” -i- 2f" + (IQ)" + a (27) / d.91 

If the function f”(z) is integrable in I--L, Ll and f”(z)E cl(-& L), and f and f’ axe 
bounded in I-L,Ll, then (1.8) can be represented in a somewhat different form.. In fact, for 
ZE t--L, L) 

where f” is the derivative understood in the ordinary (not generalized) sense. Hence, for 

r E (--L, L) 

P& *-g&-f(L)(L-ap-f(-L)(L+ .p- 

f’ (.q (L - z)-’ + f (- 4 (L + .z)’ + TeP 
Q = 1 + (l/s) ee 121x1 (4 / e) f” + 2f” + f” In (.L' - 9) + 

S - (f In f”) - f (L)(L - x)-2 - f (--L)(L -j- 2)“” + 
;f(L)(L - 1)‘1 - f’ (--L)(L + x)-l1 

0.9) 

We note that when using (1.9) for Q the single difficulty is evaluation of the integral 

Tf” therein. In a number of cases (Sec. 31, this integral is found analytically, and in 
the general case numerically. It is here convenient to utilize the properties of the operator 
T established in /6/. For the stress intensity factors N at the crack edge at the points 
(s, rfep(.z)) (for ZE(--L, L)) we obtain from (1.8) 

2, Curved extended crack. We now consider the more general case of a crack 
stretched along a certain smooth curve, given in the.plane z = 0, without selfreentrances 
R (Z), 1 E I-&L1 (it can even be closed R(L)= R(-L)) of length 2L, where I is its natural 
parameter (the distance along the curve from its midpoint along the length). Then 

dR (E)/df = t (I), n (Z) = e, x T (t) (2% 
& (1)idl = -k (1) II (Z), dn (1) 1 dl = k (I) T (I) 

where land n (2) are the tangential and normal directions to the curve, k (1) is its curvature 
at the point R (I) (positive or negative). We introduce the coordinates (I, m) in the z = 0 
plane 

x (2, m) = R (I) + emp (I) n (1) (2.2) 

(the conditions on p(Z) are the same as in Set, 11, Then the domain of the crack G-(E) is 
given by the inequalities [Z 1 <L, 1 m) < 1 (Fig, 2). As in See, 1, the problem is to determine 
the asymptotic of the displacement ~(1, m, e) as e-to. The Jacobian of the mapping given in 
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(2.2) equals 

and we write (1.1) in the domain G(e) in the following 
form, taking (2.1),(2.2) and (2.3) into account: 

Fig.2 x = i + em& Ax =x(1', 

As in Sec. 1, the asymptotic form of the operator 

must be found to obta$n the asymptotic of the function ~(1, m, 

Since 

K9 - A, Iti (9~) C sW'(9~Wl 

Here 

(2.3) 

8) from (2.4). 

because of (2.31, it is sufficient to find the asymptotic form 
use relationship (2.6). 

Let the function 9 be fairly smooth, then 

of the operator H and then. to 

(2.7) 

(2.9) 

According to (2.2) 

1 br. ri - A-“’ -. l/,&f% - ~f,CA”l’ea + e/eB~A~taaa f o (e’) (2.10) 

A = A (1’, I) =t (AR)* 
B = B (I’* m’, t, m) - 2 (AR) A (mp) 
c = C (l'. m', t, m) = IA (mpn)lS 

Substituting (2.10) into the second formula in (2.7) ) we obtain the asymptotic form of 
the integral J. It is impossible to find the asymptotic form of the integrals Ji by using 
only the asymptotic form (2.10) for the integrands , since the terms in the expansion (2.10) 
become infinite for I'= I and the corresponding integrals in (2.9) will diverge. To obtain 
the asymptotic forms of $8 it is necessary to replace the integrands by their composite 
asymptotic expansion D-10/, which is the sum of the internal (for small I' - if and external 
(obtained from (2.10) and corresponding to the original coordinates)asymptotic expansions 
diminished by the ccaxnon part with the internal asymptotic eX@uISiOn. &I a result Of CahxIb- 

tions, taking (2.7) and (2.10) into account, we obtain the following asymptotic form of the 
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operator H: 

Htp= i [F(l’)I ARf-’ - F (2) 1 Ai 1-y 6% + F 0) in* - 
-I. 

L 1 

b I AZ I-” @i-i ‘$1 - Wdl I AZ I+ frpc + $A0 - 
(m’2p’* + m’my.2 + hlpp” -t_ 1/2x2) 1 AZ l-l%} dl' dm’ f 

&S 1 
--r s 

q’h2 (I- A) dm’ + a/se* i \ (B2 [LIIR~‘*~~ - ~~2 IAZj-l%} x 

-1 -L ‘1 

dl’ dm’ + es \ (p” (hplg-l + h&Al) dm’ + 
-1 

1 

e2 ‘PO 
s ! 

+ he (L2 + Z2) g-a + hglg-l+ ‘I,&& (5 - 3A) + 
-1 

% (m”p” + m’m2 -i- kpp”) AS -I- + xx2h - xx2 1 
dm’ + o (es) 

(2.11) 

Here 

m) dm, x = P (4 k (4, x1 = (m’ t 4 x, x2 = 

(AmJz2, g =-i2 - 12, A = In [4g J (.sah2)l, AI = 1 - A i 2, hl = 
m’ (Am), & = (Am)2P2, 'pO = cp (1, m’), rp, = cp (l’, m’), cp’ = &I (1, m’) ldl 

PI P', P", f, f'l f 

are taken from the argument t. 
Making the same assumptions about the form of the asymptotic forms ~(1, m, e) and ~(1, m, 

4 as in Sec. 1, by taking account of (2.12),(2.6),(2.5) and (2.4), we can obtain integro- 
differential equations for u. (l, m), nl 0, ml, u, (I, m), u (1, ml, that generalize (1.7). To 
do this it is sufficient to show that the contribution of the remainder term ew(&m, e) con- 
taining the boundary layer at the ends has a lower order on the left side of (2.4) than the 
contribution of the other terms of the asymptotic form u(&m,e). But this follows from the 
fact that the boundary layer contribution ur (s, y,e) at the ends of G(e) in the left side of 
(1.1) equals 

where &S is the domain of boundary layer action with dimension O(E) (the longitudinal 
dimension o(i), the transverse 0 (e)), and (s,~) lies in the middle part of the crack and 
does not belong to SS, ug (s, I, e) = 0 (~1. The equations for ug, ul, +, v reduce to the form 

@P (uo) f i&W = n@pf~, 2a2P (UJ f aMa = 2nfipi --k&P (&of f dlU 

2bP @In (2/e) + ag)f8M2 = Zx#Ip, - kaP (ul)/aM + I (&) f 
lf2a2 [VaIn(4ge-a)]f~Z2 -W (~o)~az~-~wow + 
'ldr'va In (4&-21 + k=pyP Wf@M - =l,k=P (uo) + ‘f&U,, 

M===p(Z)m, iJo = f uo{l, M)dM 
-PO) 

(2.12) 

For p (E, m, e) = p = const, we obtain from (2,12) 

u (t, m, e) = eSpp (1) ‘111 Q (1. m e) + o (e’) 

Q (1, m, e) = 1 - --& ~m+-$(f.+-$)ln+f-$~+ 

(2.13) 
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and the stress intensity factor at the points (I, -f*(Z)) eqwls 

~~~~)/~[(1f~X)~+~*p'*J"~((1feX)~'~x [Q(Zr&l,~)+op)] (2.14) 

3. Ekamples o We present the explicit form of the asymptotic forms obtained from 
Sets. land 2 for cracks of different shape for p(z, J/r s)=P*eon& and we compare the 
results withexact or numerical solutions. 
lo. An ellipticaL crack 

The exact solution has the form (ill): u (z, Y, e) = BQ / E (T/‘IX) and the first terms of 
totic being considered agree with those obtained. Graphs of Q(e) (curve 1) and 

?&??I) 
11 

(curve 2) are shown in Fig. 3. The accuracy of the asymptotic forgndas (1.8) 
arxi (1.10) is of the order of 3%even for e = 0.5, and is fractions of a percent for a <0,25. 

20. A crack bounded by parabolic arcs: 

P (2) = L (1 - i I L*) 

The change in the intensity factor along the crack boundary is shown in Figs. 4a.and b 
(s i;_h.z gdis;ae rfbrom the middle along the boundary) for p = i L = 8-l = 4 (Fig. 4a), and 
L iE ; curve 2 is obtained by using the asymptotih formula (1.10) and curve 
2 by using the fo&ula Nb = p $$?? [I + 8fP~*~* fcorrespotiing to the pfane problem approx- 
imation), and curve 3 numerically*. The discrepancy does not exceed 1 - 3% near the middle 
part of the crack. 

3O. Crack in the shape of a generalized ellipse: P (2) = L (1 -39 I P)WS. f > 0. 
For x = 0 (on the axis of crack symmetry) 

Q-l - '/& IIn (lW*) - 1 - r' (c) i J? (b) - ~1 

4/h 
Fig. 5 

*The numerical solutions of the crack problems used for CokSpariSOn in Examples 2-G ate 
constructed in the Paper by Gol'dshtein, R.V., Otroshchenko, I.V., and Fedoranko, R-P-t 
Method of refining boundary meshes in three-dimensional crack theory problems. Preprint, 

Institute of Mechanics Problems, USSR Academy of Sciences, No. 239, Moscow, 1984. 
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Given in the table are numerical (in parentheses) and asymptotic values of the intensity 
factor fox 5 = II, and 6 = aIs (referred to the intensity factor for the plane problem No). 

4O. Crack in the shape of an annular sector. The line R(I) has the shape of an arc of 
a circle of radius R of length 2L = Za,R, 0< a,<n, P(E) = R, x = 1. In #is case 

Q = 1 -'/,em f 32 " [ln(256e-Ptgqtg~)-cosa~otga~- 

In the case of an annular crack (a,, = n, inner radius & = (1 - s)R, and outer radius 
R, = (1 -I- a) R) 

Q = 1 -0,25em f e* [In (256@)- 3 + 6mBf / 32 (3.1) 

end the asymptotic form (2.1.4) agrees with /11/. Given in Fig. 5 is the dependence of Nk/Nb 
on the ratio R,lRB determined numerically (by using data in /12/, curves 1 and Z), and bythe 
asymptotic formulas (curves 3 and 41, For RI/R, = 0.5, the error is 1 - 2%, while for 
RxiR,;z0.7 it is fractions of a percent. The intensity factors &&INs for the annular 
sector are presented in the table. 

5*. "Banana-shaped" crack. The line R(2) has the form of a semicircle of radius R 
and p (1) - jf=a = IIR (Fig. 6). 

We have 

Q = 1- ‘Ire f&-i& -& [3cesaln(~ tgqtg$/cosa) - 

The intensity factor N* is in the table for a 

6O. 
= 0 (on the axis of symmetry). 

A constant width crack stretched along the arc of a parabola. The line R(l) is 
given parametrically: z ES aa,y = a&/ 2, Ial Qa,, aO>O (a has the meaning of the focal 
parameter of the parabola): p (2) i-i a = const. For 1 = a = 0 (at the parabola vertex) 
x=1 and 

6(&l 

m 

Q(O,~,e)=l-l~,,en+~ln$+~ePf~e~+~Ea~a- 

eq&-++&+&ep] 
[ 

1 
ai=fl as=Jfw 

Fig. 6 

The case UO-C= corresponds to an infinite crack of constant width stretched along a 
parabola. The quantity Q(0, m, e) here differs from the value of (3.1) by an amount ('Mew 
1~x3, i.e., the values of the intensity factor N* are not much less than for an annular 
crack with the same local characteristics (width and curvature). 
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A GYROSTAT WITH AN ELASTIC 
ANlr THEIR STABILITY* 

M.K. NABIULLIN 

Using Rumyentsev methods /l-3/ in the Kur'min form /4/, stationary 
motions are deduced for a gyrostat with a circular annular plate clamped 
by the inner contour in a housing, and sufficient conditions are obtained 
for their stability. The paper touches on a cycle of papers devoted to 
investigating the stability of systems with distributed parameters: 
elastic rods, flexible rectangular plates, and a flexible string /S-19/. 

1. We introduFe the following coordinate system: CWa% is the orbital system with 
origin at the centre of mass of the mechanical system for the plate state of strain, the 

CZ, axis is along the orbit radius, the CZ, axis is perpendicular to the orbit plane, and 
the axis Cz, is orthogonal to the Cri, C+, axes: OZ~O is the coordinate system coupled 
rigidly to the gyrostat housing whose axes axe directed along the principal central axes 
constructed for the centre of mass 0 of the system for the undeformed stata of the plate: 
%#*a is the coordinate system whose 0% axes (I== i,2,3) are parallel to the I,#, t axes, 
respectively. 

We will define the gyrostat location in the orbital coordinate system by the Euler angles 
$6, cp and the direction of the zf axes (r=.=1,2,t, with respect to the axes of the system 

0ulWr by the direction cosines ellr cdl, cat. that depend in a known manner on the angles 
'P, e, cp, for instance, a,=rinqtein8lZO1. 

we will define the location of points of the plate in the deformed State with respect to 
the gyrostat housing by a radius-vector whose projections on the axes are 

r, = (a + r) co9 I - +h, rv = (0 + r) sin & - zu, (1.i) 
r, 9 I + w (q = qcos b - (a + ?)-I wh sin h, 4 = ctt,sia 5 f ((I f r)-l oh cash) 

Here a is the radius of the inner circular contour of the middle plane located in the 
02~ plane, o+r,b,z are cylindrical coordinates of an arbitrary point of the plate in the 
undeformed state, w(T,&,z) is the projection of the elastic displacement vector of an arbitrary 
point of the middle plane on the s-axis, and the letter subscripts on the quantity w denote 
first-order partial derivatives with respect to the variable indicated in the subscript. 
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